您好,欢迎来到试剂仪器网! [登录] [免费注册]
试剂仪器网
位置:首页 > 资讯 > 产品技术
大连化物所实现甲烷与氧气室温直接催化转化
2023.09.25   点击217次

近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组研究员邓德会、副研究员于良团队,在甲烷室温催化转化的研究中取得新进展。该团队发现二维MoS2边硫空位限域的配位不饱和双Mo位点,可在室温下催化甲烷与氧气高选择性转化为C1含氧产物。该成果为开发甲烷与氧气室温催化转化过程提供了新思路。

甲烷直接催化转化制高附加值化学品是世界性难题,被誉为化学领域的“圣杯”,这主要是由于甲烷的低极化率和高的C-H键能(439kJ/mol),使其转化通常需要借助高温(大于600℃)、强氧化剂(如发烟硫酸)或外场(如等离子体)等苛刻的反应条件,但这极易导致目标产物发生过度转化(如生成CO2等)。利用廉价、绿色的氧气在低温甚至室温下直接定向转化甲烷是一个“梦想反应”。然而,氧气分子极难在温和条件下持续形成可活化甲烷C-H键的活性氧物种,导致室温下甲烷与氧气直接催化转化颇有挑战性。

邓德会团队致力于二维催化材料的表界面调控与甲烷等能源小分子的催化转化研究。本研究以此为基础,通过模拟自然界中甲烷单加氧酶的双核金属中心,构筑了MoS2边硫空位限域的配位不饱和双Mo位点,实现了甲烷与氧气室温直接催化转化制C1含氧产物。相比于之前报道的化学循环反应体系中复杂的氧气/甲烷分步变温活化和低的甲烷转化率(<1%),该催化体系可在25℃下实现甲烷与氧气一步直接转化为甲醇等C1含氧产物,甲烷的最高转化率可达4.2%,C1含氧产物的选择性大于99%,有效抑制了CO2的生成。结合时间分辨原位表征与理论计算研究发现,MoS2边硫空位限域的配位不饱和双Mo位点可在室温下直接解离氧气分子形成高活性O=Mo=O*物种。该物种能够高效活化甲烷C-H键进而将甲烷经由甲氧基中间体转化为C1含氧产物。

相关研究成果以Direct conversion of methane with O2 at room temperature over edge-rich MoS2为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项(B类)“功能纳米系统的精准构筑原理与测量”等的支持。

大连化物所实现甲烷与氧气室温直接催化转化

大连化学物理研究所