您好,欢迎来到试剂仪器网! [登录] [免费注册]
试剂仪器网
位置:首页 > 资讯 > 产品技术
2492
研究阐释低密度耐磨高锰钢强韧化与断裂机制
高锰钢(Hadfield steel)作为最重要的耐磨材料之一,被广泛应用在矿山、冶金、水泥、电力、建材、铁路、海工等国家关键行业中。它在面临冲击磨损过程中的强冲击和大压力等问题时表现出的优异耐磨性,是其他材料难以比拟的。这主要归功于高锰钢出色的加工硬化能力,然而也正是需要依靠加工硬化,使得高锰钢在低应力磨损条件下服役效果不理想。同时,“双碳”战略目标要求高
大连化物所集成出30kW级锌溴液流电池电堆
近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋和袁治章团队突破了高能量密度锌溴液流电池关键技术,成功集成出30 kW级的锌溴液流电池电堆。电堆面容量可达140 mAh cm-2,电堆实测放电电量可达31.6 kWh。锌溴液流电池具有成本低、开路电压高(1.82 V)、能量密度高(>190 Wh L-1,基于2 mol L-1活性物质)等优
研究人员发现一种通过解聚来回收尼龙6的新方法
尼龙6是一种坚韧的、不可生物降解的塑料,不能用常规方法回收。现在,来自美国的一个团队研究出了一种新方法。通过一种容易获得的三氨基镧催化剂,尼龙6可以在没有溶剂的情况下,在中等温度下高度选择性地、几乎定量地解聚,以回收单体ε-己内酰胺。单体从聚合物的一端依次移除,就像从链条上解开珍珠一样。尼龙是许多领域应用的首选材料,包括汽车制造、包装、基础设施、纺织品和渔业
南京天光所完成Φ2.5米非球面镜加工
近日,中国科学院国家天文台南京天文光学技术研究所天文与空间镜面技术研究室加工完成一块2.5米口径非球面镜面。该镜是南京天光所目前研制完成的最大单口径镜面,也是近年来继云南天文台太阳望远镜2米环形主镜、云南大学多通道望远镜1.6米主镜之后的又一件大型非球面镜面。在该镜加工过程中,科研人员以垂直检验塔和原4米龙门机床作为结构基础构建了加工/检测一体化平台,可实现
上海微系统所等制备出石墨烯基量子电阻标准芯片
电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度
化学所发展出结构色3D打印新策略
三维光子晶体由于独特的光学性质而受到关注,并在各个领域展现出广阔的应用前景。3D打印技术为构建复杂的三维光子晶体结构提供了可能。然而,常见的喷墨打印、直写打印与熔融沉积方法受限于构造三维结构的自由度、繁琐冗长的平衡着色过程以及较弱的体积结构色性质,阻碍了进一步应用。虽有报道利用非连续的3D打印实现三维光子晶体的快速制备,但粗糙的表面形貌和低保真性难以满足光学
3D打印
2022.12.08
大连化物所等研制出单组分暖白光电致发光器件
近日,中国科学院大连化学物理研究所副研究员杨斌与山东大学研究员刘锋等合作,开发出具有高效白光发射的新型双钙钛矿材料,并制备了基于该材料的单组分暖白光发光二极管(LED)。电气照明占全球电力消耗的15%,释放了全球5%的温室气体。采用更加高效、低成本的照明技术可缓解能源、环境危机,助力实现“双碳”目标。目前,绝大多数白光LED技术主要依靠蓝光LED激发多组分荧
分子植物卓越中心首次完成水稻从种子到种子全生命周期空间培养实验
北京时间12月4日,神舟十四号载人飞船返回舱在东风着陆场成功着陆。当天,经历了120天全生命周期的水稻和拟南芥种子,随同其他载人空间科学实验样品交付空间应用系统。水稻是人类主要的粮食作物,养活了世界上近一半的人口,也是未来载人深空探测生命支持系统的主要候选粮食作物。利用空间微重力进行水稻育种也是空间植物学研究的重要方向之一。种子既是人类的粮食,也是繁殖下一代
美国莱斯大学发现沥青转化石墨烯的合成工艺
美国莱斯大学的材料科学和纳米工程助理研究教授拉赫曼与他的合作者,通过独特的闪光焦耳加热法(FJH)工艺,将富含碳元素的沥青废料转化为有用且高价值的石墨烯。闪光焦耳转变方法的论文11月18日发表在《科学》杂志上,获得美国空军科学研究办公室、美国陆军工程兵团和美国国家实验室的资助支持。论文提到,石油原油在精炼过程会产生大量的沥青质,目前估计全球大约有1至2万亿桶
上海药物所发现体外扩增肝细胞新方法
肝脏是哺乳动物重要的代谢器官。肝脏在生理稳态过程中通过缓慢的增殖维持自我更新,但在受到损伤后具有很强的再生能力。研究表明,在2/3肝切除后,小鼠肝脏能在一周内恢复至原先大小。与体内的增殖能力不同,成体肝细胞在体外难以进行培养和扩增。虽然近期的一些研究发现,利用小分子化合物和细胞因子等可以实现肝细胞在体外的长期扩增,但这些培养方法较为复杂,且长期体外培养的肝细
上海有机所发现SENP1通过抑制RIPK1介导的凋亡和炎症抑制脂肪性肝炎
非酒精性脂肪肝病(NAFLD)是普遍发生的肝脏类疾病,可进一步发展成非酒精性脂肪肝炎(NASH)。NASH主要病理特征包括肝脂肪变性、肝炎、肝纤维化等。肝细胞死亡与炎症是造成NASH发展成终点肝病如肝硬化、肝癌等的重要因素。而在NASH中,肝细胞死亡以及炎症发生的机制尚不明确。RIPK1是丝氨酸/苏氨酸蛋白激酶。在肿瘤坏死因子(TNF)通路中,RIPK1是调
研究人员开发出更具可持续性和可回收性的聚氨酯泡沫
比利时列日大学高分子教育与研究中心(CERM)的一个研究小组开发了一种创新工艺,该工艺可在不使用异氰酸酯(剧毒物质)的情况下,重新考虑聚氨酯(PU)泡沫的制造,同时聚氨酯泡沫还可以回收利用。聚氨酯(PU)泡沫是我们日常生活中不可缺少的一种产品。几十年来,硬质聚氨酯泡沫用于建筑行业(例如建筑中的地板、墙壁和屋顶隔热)或冰箱等家用物品(四壁和门)中用作最有效的隔
大连化物所提出可见光照对锌铁双氧化物类芬顿催化剂反应路径的调控新策略
近日,中国科学院大连化学物理研究所能源研究技术平台穆斯堡尔谱研究组研究员王军虎团队,通过可见光照实现了对锌铁双氧化物类芬顿催化剂反应机理的有效调控,为多相催化剂在类芬顿反应中反应路径从自由基到非自由基的转变提供了新策略。各种无机阴离子或高浓度有机物对类芬顿反应中自由基基团的猝灭,限制了其在工业应用中的价值。非自由基主导的体系可有效克服上述限制,在广泛存在的水
上海药物所等构建表面功能仿生型纳米药物载体
糖尿病是一种威胁人类健康的慢性代谢性疾病。目前,临床上针对Ⅰ型糖尿病及Ⅱ型糖尿病中晚期患者的主要治疗方式是频繁皮下注射胰岛素,这给患者造成了痛苦与不便,并会导致外周高胰岛素血症,从而引起低血糖、肥胖等副作用。相较而言,口服胰岛素因无痛、给药方便等特点而更易被患者接受。然而,一方面,人体胃肠道内的生理屏障限制了胰岛素的口服吸收效率;另一方面,胰岛素经口服吸收入
上海微系统所研制出集成多功能超柔性微电极阵列
中国科学院上海微系统与信息技术研究所传感技术国家重点实验室采用微纳加工技术,制备了多通道超柔性微电极阵列并集成天然丝蛋白光纤组成的多功能探针(Silk-Optrode),可实现大脑神经信号的精准调控与解析。11月8日,相关研究成果以A silk-based self-adaptive flexible opto-electro neural probe为题,
研究发现选择性激动SaClpP的新型抗生素
ClpP是原核和真核生物中高度保守的ATP依赖的丝氨酸水解酶,负责调控蛋白质稳态。生理状态下,ClpP通过与伴侣蛋白(如ClpX形成ClpXP复合体)发挥水解酪蛋白的功能。小分子激动金黄色葡萄球菌ClpP(SaClpP)异常降解关键蛋白质,是抗生素发现的新策略。由于异常激活人源ClpP (HsClpP)可引起线粒体蛋白稳态失调从而产生细胞毒性,因此,理想的靶
青岛能源所开发出稳定制氢离子传导膜的新型制备技术
与可再生能源电解水制氢技术相比,通过提纯工业副产氢获取燃料氢气是现阶段更廉价的制氢方式。金属氧化物构成的氧离子传导膜具有对氧100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在致密氧离子传导膜的两侧,可实现低纯氢气燃烧反应,进而驱动膜另一侧水分解,直接获得不含一氧化碳的氢气,用于氢燃料电池。然而,氧离子传导膜通常暴露在含H2、CO2、H2S、H2O、
离子传导膜
2022.11.14
兰州化物所燃料电池双极板防护涂层研究取得进展
燃料电池是把燃料具有的化学能直接转换为电能的化学装置,又称电化学发电器。燃料电池具备运行中零排放、高效率等优点,是交通运输领域实现低碳排放的重要技术之一。双极板是氢燃料电池的核心部件,主要作用是收集燃料电池产生的电流、向电极供应反应气体、阻止两极间反应物质的渗透,并支撑加固燃料电池。然而,由于燃料电池的酸性工作环境,双极板易被腐蚀。因此,开发具有优良的导电性
大连化物所开发出高能量密度锰基混合单液流电池
近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋团队开发出基于Br-辅助MnO2放电的混合型液流电池,具有能量密度高、可逆性高的优势。液流电池(FBs)具有安全性高、寿命长、效率高等优势,在大规模储能领域受到广泛关注。目前,液流电池能量密度较低,进一步发展受阻。Mn2+/Mn3+具有电极电位高、溶解度高、电化学动力学良好、成本低等优势,在高能量密
液流电池
2022.11.10
生物物理所实现在亚细胞分辨率实时监测衣康酸的浓度变化
衣康酸是一种由激活巨噬细胞合成具有抗炎功能的中间代谢产物。已有研究表明,在线粒体中顺乌头酸在代谢酶IRG1的催化作用下脱羧产生衣康酸,随后衣康酸被转运至胞浆发挥免疫调节功能。此前,中国科学院生物物理研究所李新建团队报道了衣康酸能够诱导巨噬细胞溶酶体的生物合成提高机体抵御细菌入侵的天然免疫能力(Molecular Cell 2022,PMID:35662396

125页,当前第6